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Abstract-Infinitesimal plane deformations of ideal fiber-reinforced composites with elastic shearing stress
response are considered. The fibers are straight and parallel, and there is a straight crack perpendicular to the
fibers. Ageneral expression for the energy release rate per unit length of crack advance is obtained. Explicit
expressions in terms of the body geometry and loading are obtained for three special classes of body shapes:
bodies symmetrical about a fiber, bodies bounded on the cracked side by a fiber, and bodies bounded on the
opposite side by a fiber. The results also apply to cracks parallel to the fibers, and to cracks in compressible
materials reinforced by two orthogonal families of inextensible fibers.

I. INTRODUCTION
Materials composed of strong fibers bonded together with a weaker material can be modelled by
treating the fibers as continuously distributed and inextensible. The analysis of deformations of
such materials is greatly simplified if it is also assumed that the composite is incompressible in
bulk. An idealized material satisfying these assumptions is called an ideal fiber-reinforced
composite. The theory of such materials is the subject of a book by Spencer[l] and a recent
review article [2]. The applicability of the theory to real composites is discussed in many of the
papers that we cite.

The theory is especially simple when the fibers are straight and parallel, the shearing stress
response of the material is elastic, and attention is restricted to infinitesimal plane deformations.
We use these assumptions in the present paper. In such cases displacement boundary value
problems are trivial, and explicit solutions of many traction boundary value problems have been
obtained[3-5]. It is known that the plane traction problem is well-set[6].

The work of England and Rogers[4] concerns cracked bodies, and contains complete
solutions for bodies with two orthogonal axes of reflectional symmetry, the cracks being either
parallel or perpendicular to the fiber direction. Thomas and England[5] have worked out a case
involving a crack oblique to the fibers.

In the present paper we extend this work on plane crack problems by deriving a simple
general expression for the energy release rate in crack advance, analogous to the expression for
the energy release rate in terms of the stress intensity factor used in elastic fracture
mechanics [7, 8]. We then derive explicit expressions in terms of the body geometry and loading,
for some special classes of body shapes.

We consider the plane deformation of a body of arbitrary shape with a straight crack
perpendicular to the fiber direction (Section 2). Because of the well-known duality between fibers
and their orthogonal trajectories in plane deformations, this problem is mathematically
equivalent to one involving a crack parallel to the fibers, and to plane stress or plane strain in
compressible materials reinforced by two orthogonal families of inextensible fibers. We choose
to discuss the least likely application of the theory because the language is simplest in that case.

In Section 3 we show that the energy released per unit length of crack advance is equal to
F0

2/GL*, where Fo is the force at the crack tip in the fiber passing through it, G is the shear
modulus of the material, and L * is the harmonic mean length of the two parts of the crack-tip
fiber.

In the remainder of the paper we derive explicit expressions for Fo for some special classes of
body shapes. We show that for bodies symmetrical about a fiber, Fo is directly equal to the
resultant normal force Po on the crack face (Section 5). If the boundary opposite to the crack lies
along a fiber, Fo is equal to Po+ MoIH, where Mo is the moment of the crack load about the tip
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and H is the distance from the tip to the opposite boundary (Section 5). Both of these results are
obtained with virtually no calculation. A similar result is obtained if the boundary cut by the
crack lies along a fiber, but the distance H is replaced by a complicated mean distance (Section 6).

Such simple and explicit results are not available in elastic fracture mechanics. Thus, even if a
given real material might be modelled more accurately as a transversely isotropic elastic material,
it is possible that the present results may furnish some useful insight. The standing of the present
results as approximations to elasticity theory is discussed very briefly in Section 3.

2. EQUATIONS AND BOUNDARY CONDITIONS
We consider plane deformations of a cracked body of ideal fiber-reinforced material. The

fibers, which are treated as continuously distributed and inextensible, lie parallel to the x-axis.
The crack is perpendicular to the fibers, lying along the positive y-axis with the crack tip at the
origin (Fig. 1).

The problem of deformation under prescribed tractions on the external boundary curve C,
with no traction on the crack surfaces, can be solved by superposing the solutions of two simpler
problems: (i) deformation of the uncracked body by the prescribed tractions on C, and (ii)
deformation of the cracked body under no traction on C, but with tractions on the crack sufficient
to cancel those given by the solution of the first problem. Methods of solution of the first problem
have been discussed elsewhere [3,6]. Here we consider only the second problem. Thus, we
suppose that there is no traction on C, and that on the crack, the stress components (Txx and (T., take
prescribed values:

(Txx(O,y) = -p(y), O'.,(O,y) = -t(y) (y>O). (2.1)

Let y = h be the point at which the crack reaches the outer boundary C, so that h is the length
of the crack. For later use, we introduce the following notation:

P(y) = f p(y') dy', M(y) = f y'p(y') dy'. (2.2)

Since the fibers are inextensible, the displacement u in the x-direction is constant along each
fiber. We use the notation

r(y) (x >0, y ~O),

u(y) = u_(y) (x <0, Y~O), (2.3)

uo(y) (y sO).

r
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The displacement v in the y-direction depends only on x. This follows from the assumption of
bulk incompressibility, given fiber inextensibility and the restriction to plane deformation. This
idealization is unreasonable for many real composites. The result that v = v(x) would follow
more directly if the material contained a second family of inextensible fibers parallel to the
y-axis.

Since we consider pure traction problems, the displacement and rotation can be prescribed at
one point. We take the displacement at the crack tip to be zero, and in lieu of a rotation condition
we take u'(y) to be zero just ahead of the crack tip:

u(O) = v(O) = u<'>(O) = o.

We suppose that the shearing stress response of the material is elastic, so that

Uxy = G[u'(y) +v'(x)].

(2.4)

(2.5)

The two stress components Uxx and U yy are reactions to the constraints of fiber inextensibility and
bulk incompressibility, and they are determined by using the equilibrium equations and boundary
conditions. With (2.5), the equilibrium equations are

and

Uxx,x = - Uxy,y = - Gu"(y)

Uyy,y = - Uyx,x = - Gv"(x).

(2.6)

(2.7)

3. ENERGY RELEASE RATE
We wish to calculate the rate at which energy is dissipated in an extension of the crack. In an

extension normal to the fibers, the energy release rate is[8]

1 i'<§ = lim -2 uxx(O, y - E) [u+(y) - u_(y)] dy.
,....0 E 0

(3.1)

There is no contribution from a discontinuity in v across the crack, because with v = V(X), v is
equal to v(O) = 0 over the entire length of both faces of the crack. The tangential tractions t(y) on
the crack do no work in any admissible deformation, and their sole effect is to produce stress
concentration layers along the faces of the crack. These layers have zero thickness and in them
the stress U yy is infinitely large, within the present theory. In a more realistic theory allowing for
bulk compressibility, these high stresses would produce a shearing mode of crack deformation,
and the energy release rate would include an additional term due to the discontinuity in v. For a
compressible material, (3.1) is the contribution to the energy release rate from the opening mode
alone.

Within the present theory, the shearing stress is generally discontinuous across the fiber y = 0
that passes through the crack tip, and this fiber is a stress concentration layer carrying a finite
force. The tensile stress then has the form

Uxx = F(x)~(y) +u~x<x, y), (3.2)

where F is the force in the singular fiber, ~(y) is the Dirac delta, and u~x is finite. The relation
between F and the discontinuity in u'(y) is found by using (3.2) and (2.3) in the equilibrium eqn
(2.6):

F'(x) = - G[u':'(O) - u<'>(O)]. (3.3)

Let x = L+ and x = - L_ be the points at which the singular fiber y = 0 reaches the outer
boundary C (Fig. 1). With F = 0 at these points, from (3.3) we find that the force Fo= F(O) at
the crack tip is

(3.4)

Here we have used the value u<'>(O) = 0 prescribed in (2.4).
llSS Vol. Il No. 6-F
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When (3.2) is used in (3.1), the finite part O'~x makes no contribution in the limit, and we obtain

Cfj = lim Po[U+(E) - u_(E)]/2E
.-->0

(3.5)

Then with (3.4), we conclude that

where L * is the harmonic mean width:

(3.6)

2/L* = IIL++ IlL. (3.7)

England and Rogers [4] have suggested fracture criteria that in the present case would predict
fracture at a critical value of Po. If, instead, fracture is predicted to occur at a critical value of the
energy release rate, then the fracture criterion is based on the value of Po(GL*)-1/2 rather than Po
alone.

The crack-tip stress and displacement fields used here in evaluating the energy release rate are
very different from those familiar from elasticity theory[7]. Spencer[9] has considered elastic
materials with small but finite fiber extensibility and has used singular perturbation methods to
show that the singular fiber through the crack tip can be interpreted as a thin region of high tensile
stress, with the expected 0(,-1/2) stress singularity at the crack tip. In the present theory this point
singularity is not seen, since it is buried within the stress concentration layer.

The question arises, whether the energy release rate calculated from the slightly-extensible
elastic model must necessarily agree with the result (3.6) from the inextensible model.
Sanchez[10] has shown that this is indeed the case; the elastic energy release rate approaches the
value (3.6) in the limit as the fiber extensibility approaches zero. We do not prove this in the
present paper, but merely accept the result as plausible.

4. DISPLACEMENT EQUATIONS OF EQUILIBRIUM

The result (3.6) is analogous to the expression for the energy release rate in terms of the stress
intensity factor in elasticity theory[7]. Just as it is necessary to solve the entire boundary value
problem in order to determine the stress intensity factor, here it is often necessary to obtain a
complete solution before the fiber force Po can be determined. However, solving problems in the
present theory is relatively simple in comparison to solving elasticity problems for finite bodies.
We give some examples in Sections 5 and 6, after some preliminary manipulations in the present
section.

For notational convenience we usually restrict attention to bodies whose outer boundary C is
cut no more than twice by any line parallel to a coordinate axis, so that the equation of the
boundary can be written in two parts as y = y+(x) and y = y_(x), with y+ ~ y_, or equally well as
x = x+(y) and x = x_(y), with x+ ~ L. We use the following special notation (Fig. 1):

We also use the notation

ax(y) = xAy) - L(y), ay(x) = y+(x) - y_(x).

(4.1)

(4.2)

First integrals of the equilibrium equations can be obtained by the method of shearing stress
resultants [3,6]. The y-component of the resultant force on the part of the boundary to the right
of any line x = constant is zero for x"l 0, and thus the total shearing stress on this line is zero.
This total can be expressed in terms of displacements by integrating (2.5) over the length of the
line:

v'(x)ay(x) +u(y+(x» - u(y_(x» = o. (4.3)
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The integral of the shearing stress over the length of any fiber is equal to the x-component of the
resultant force applied to the part of the body above that fiber. For fibers that end on the crack,
we obtain

u~(y)x±(y)+ v(x±(y» = P(y)/G (0 $ y $ h). (4.4)

Here we have used (2.2) and (2.4). On fibers that do not intersect the crack, the resultant shearing
stress is zero. In particular,

uMy )l1x(y) + v(x+(y» - v(x_(y» = 0 (y $ 0). (4.5)

If there is a region y > h, the functions u± satisfy an equation of the form (4.5) in it.
The problem is posed in terms of u and v by (4.3)-(4.5) and the conditions (2.4). When u has

been found, Fo is given by (3.4). In the latter expression we can evaluate u' in terms of v by using
(4.4). In this way we obtain four alternative expressions for Fo:

(4.6)

Here Po is P(O), the total normal force on the crack.

5. SOME SIMPLE EXAMPLES
There are special cases in which the fiber force Fo can be evaluated with little or no effort. The

simplest cases are those in which the body is symmetrical about a line y = constant, with two
symmetrically disposed edge cracks or one symmetrical central crack, symmetrically loaded.
England and Rogers[4] have worked out the complete stress and displacement fields for some
cases of this sort. For our present purpose, we need only observe that by symmetry, v must
vanish on the line of symmetry and thus vanish everywhere. It is not difficult to verify that (4.6)
remains valid in this class of examples, with Po interpreted as half the resultant pressure in the
case of a central crack. With v =0 it follows from (4.6) that Fo=Po, and from (3.6) it then follows
that the energy release rate is Po2/GL*. In view of the inordinate difficulty of solving anyone
problem in this class by means of elasticity theory, it may be useful to know that the elastic
energy release rate is given approximately, when the fiber extensibility is small, by the simple
expression P//GL*.

Among unsymmetrical bodies, the simplest are those whose lower boundary lies along a fiber.
With y_(x) = - H for all x, and with restriction to boundaries of the type described in Section 4, it
is then necessarily true that x+(y) ~ L+ and x_(y) $ - L for y < O. For boundaries of this kind, it
can be shown that uo(y) = 0 for all y < O. It then follows from (2.6) and the zero-traction boundary
conditions that Uxx = 0 throughout the region - H < y < O. The boundary fiber y = - H may be a
singular fiber carrying a finite force.

The foregoing information is enough to allow calculation of Fo• We consider the part of the
body to the right of the line x = 0, and calculate the moments of the forces on this part about the
pivot x = 0, y = - H. The load on the crack surface has moment Mo+PoH, where Mo = M(O) is
the moment about the crack tip, defined in (2.2). This must be balanced by the moment of the
contact forces exerted by the left-hand part of the body on the right-hand part, across the line
x = O. The shearing stresses on this line have no moment about the chosen pivot, which lies on the
line, and similarly the force in the boundary fiber has no moment. Since Uxx = 0 for - H < y < 0,
the total moment is that of the crack-tip fiber force, FoH. Consequently,

Fo= Po+ Mo/H. (5.1)

6. A MORE COMPLICATED CLASS OF EXAMPLES
We now consider a class of examples in which it is necessary to solve the system (4.3)-(4.5)

before Fo can be found. We consider bodies with a straight upper boundary, y+(x) = h, and a
convex lower boundary, y = y(x) (we omit the subscript on y_(x». For all such bodies we obtain
a result of the general form (5.1), but with H replaced by a certain average thickness. This result
is given in (6.17).
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Part of the body may lie below the line y = - H. Since the lower boundary is convex, this part
must lie entirely on one side of the line x = 0 which intersects the boundary at y = - H. We take
the positive x-axis to point away from such a part, if there is one, so that y(x) increases
monotonically with x for x > O. Then in the right-hand part of the body there is a one-to-one
correspondence between the values of x and y that are coupled in the equilibrium eqns
(4.3H4.5). In determining Fo it will prove to be unnecessary to find u and v in the region y < - H.

Analysis of the system of differential-difference eqns (4.3H4.5) is facilitated by introducing the
difference quotients Q+ and Q_ defined by

Q+( ) = { [u~ - u±(y)]/(h - y) (y ~ 0),
-y [u~-uo(y)]/(h-y) (-H$y$O).

(6.1)

Here u~ = u±(h). The quotient is the difference between the boundary values of u at the two ends
of a line x = constant, divided by the distance between the two ends. The displacement u is given
in terms of the quotient by

(6.2)

Uo(Y) = u! +(y - h)Q+(y) (- H $ Y $ 0).

The boundary conditions on u in (2.4) are, in terms of Q,

(6.3)

We intend to eliminate v from the system (4.3H4.5) by first differentiating (4.4) and (4.5) and
then using (4.3). Because of the preliminary differentiation, the resulting system is not fully
equivalent to the original system. It is necessary to insure in addition that (4.4) and (4.5) are
satisfied at some one point, say y = O. These three conditions are equivalent to the stipulation that
all four of the expressions in terms of u and v in (4.6) have the same (unknown) value Fo• When
the two conditions involving u in (4.6) are expressed in terms of Q, we obtain

(6.4)

In addition, the two conditions on v in (4.6) remain to be satisfied.
We need to use (4.3) only for values of x equal to x±(y) with y > - H. In this domain of y, x+ is

positive and x- is negative. Consequently, (4.3) can be written as

(y ~ -H). (6.5)

By differentiating (4.4) and (4.5) with respect to y and expressing u in terms of Q in the
resulting expressions, we obtain

and

(y ~O) (6.6)

We use (6.5) to eliminate v from (6.6) and (6.7). The resulting equations have an integrating
factor y - h, and can be put into the forms

(6.8)

and

[(y - h)2.:lXQ~], =x~(Q+ - Q_) (y - h) = - x~(u! - u!) (- H $ Y$ 0). (6.9)

The last member of (6.9) is obtained from the second by using (6.1).
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We now integrate (6.5), (6.8) and (6.9). From (6.5) we ultimately need only the value v(L+). To
obtain an expression for this value, we multiply (6.5) by x~ and then integrate from y = - H,
where x+ = 0, to y = 0, where x+ = L+. We recall that v(O) = O. Then, with an integration by parts,
we obtain

In integrating (6.8) we use the boundary condition that Q~(h) is finite, and obtain

(6.10)

(y ~O) (6.11)

where M and P are defined in (2.2). The boundary condition (6.3b) is used in integrating (6.9). We
obtain

(y - h)2dxQ~ = utdx(O) - (ut - u!) [x_(y) - x-(O)] (- H :5 Y:5 0). (6.12)

This yields the function Q~ to be used in (6.10). The final integrations of (6.11) and (6.12) are
unnecessary in finding Fo•

It remains to determine the parameters u! and Fo• By using (6.11) in (6.4), we obtain
expressions for u~ in terms of Fo:

(6.13)

We use this to eliminate u~ from (6.12):

G(y - hfdxQ~ = - (Mo- hPo+hFo)(2/L*)x_(y) (- H:5 y:5 0). (6.14)

Here L* is defined in (3.7). We next use (6.3a), (6.13) and (6.14) in (6.10), and obtain

Gv(L+) = (2IIL* -llh) (Mo- hPo+hFo).

Here I is the integral defined by

Finally, we use (6.15) in (4.6b) and solve for Fo. We obtain

Fo= Po +MolD,

where D is a length defined by

D = 2h2II(L*- 2hI).

(6.15)

(6.16)

(6.17)

(6.18)

We can apply both (5.1) and (6.17) to rectangular bodies, and the two formulas agree if D = H
for such bodies. It is straightforward to verify that (6.16) and (6.18) do yield the result D = H in
such cases.

Some further understanding of the nature of the length D can be obtained by considering
bodies symmetrical about the crack, for which x_ = - x+ and L± =L, say. For these cases, an
integration by parts in (6.16) yields

I = L/2h - L/2H*,

where H* is the harmonic mean width defined by

I I (L dx
H*=IJo h-y(x)"

(6.19)

(6.20)
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Then from (6.18), D is found to be H* - h. In both this and the preceding special case, D can be
interpreted as an average depth of the uncracked part of the body.

7. DISCUSSION

Since the direction of extension of a crack need not be parallel to its original direction, the
parallel extensions considered in the present paper represent only the simplest possibility. In the
case of a crack parallel to the fibers, it appears plausible that further extension will remain
parallel to them. However, we have chosen to phrase our discussion in terms of a crack
perpendicular to the fibers. In this case it is immediately evident that the crack might become
L-shaped, with further extension by delamination rather than by fiber-breaking. This possibility
would appear to be particularly likely when the shearing stresses near the crack tip are large.

In this connection we note that for the particular classes of body shapes discussed in Sections 5
and 6, it is possible to calculate the crack-tip shearing stresses explicitly. As an example, we
consider the especially simple case of a symmetrical body, symmetrically loaded (Section 5). In
this case v is zero and thus (Txy = Gu'(O) near the tip. Since uMO) = 0 and u~(O) = ± Fo/GL (from
(3.4)), there is no shearing stress just ahead of the tip but there are stresses (Txy = ± Fol L± just
behind it. If a fracture criterion in terms of shearing stress be applicable, the crack will extend in
the positive x-direction if C is smaller than L.

However, there is a reason to doubt that the crack-tip shearing stresses determine the
direction of crack advance. If the idealizations used in the present theory are taken quite literally,
there can be no in-plane shearing mode of crack extension, and the shearing stresses make no
direct contribution to the energy release rate. The general expression (3.6) for the energy release
rate remains valid for an L-shaped crack, with suitable reinterpretation of the quantities in it. For
an incipient extension in the positive x-direction, Fo should be replaced by F+, the force in the
singular normal line along the right-hand face of the crack. This force can be expressed in terms
of the tangential load t(y) on the crack free and the shearing stress (Txy just inside the material by

F+ = f ((TXY + t) dy. (7.1)

Thus, if the direction of crack advance depends on a criterion in terms of the energy release rate,
it is not sufficient to consider only the crack-tip shearing stresses.

Within the present theory, it should be possible to calculate the energy release rate for an
arbitrary direction of crack extension. We might then be able to predict the direction of crack
advance, by assuming that it is the direction of maximum energy release rate. We intend to carry
out further work along these lines.
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